Как собрать электрощит на дачу? 3 схемы с пояснениями
При организации электроснабжения дачи часто не уделяют должного внимания тому, каким должен быть современный электрощит, руководствуясь логикой «это не основное жильё и так сойдёт». Но в большинстве случае несерьезное отношение к электроснабжению может навредить вам и вашему имуществу. Поэтому я расскажу о том, как собрать простой электрощит и подключить основные защитные коммутационные приборы в нём.
Ввод и заземление
Начнем с того, что в большинстве отечественных электросетей напряжением 0.4 (0,38) кВ на опорах мы видим 4 провода: три фазы и ноль. Соответственно в дом заводится от 1 до 3 фаз (в зависимости от условий вашего договора об электроснабжении) и ноль.
Ноль или нейтральный провод — так называется, потому что на нём нет опасного для жизни потенциала и обозначается он латинскими буквами PEN и в бытовых электросетях он заземлен на подстанции (называется — глухозаземленная нейтраль) и повторно заземляется на вводе в дома (если повезет…). Такое решение называется «система заземления TN-C», а в народе говорят «двухпроводный ввод без земли».
Если у вас на участке есть заземляющий контур, то у нас уже есть рабочий ноль (обозначается уже как N), подключенный к электроприборам, и защитный проводник (обозначается PE), подключенный к корпусам электроприборов. Такая система заземления будет называться TN-C-S, TN-S или TT.
Не будем вдаваться и рассказывать об отличиях этих систем, если вам интересно узнать подробнее — подпишитесь на канал и напишите об этом в комментариях. Это важно для того, чтобы мы публиковали полезные для вас статьи. Отметим лишь то, что TN-S — это система заземления, в которой на вводе у потребителя 3 провода (фаза, ноль, земля) при однофазном вводе и 5 проводов при трёхфазном, соответственно. А в TN-C-S на ввод приходит 2 или 4 провода (фазы и ноль) для однофазного и трёхфазного ввода соответственно, а заземление уже делают непосредственно у потребителя на участке.
При этом в ПУЭ четко сказано, что, (см. п. 7.1.17), что электроснабжение зданий и сооружений должно быть организовано по системе заземления TN-C-S или TN-S. Как отмечалось выше — TN—S в чистом виде встречается очень редко.
Так возникает вопрос, если нельзя строить и жить «без земли», то, где же взять третий при однофазном вводе или пятый при трёхфазном вводе защитный провод? Всё очень просто — нужно организовать контур заземления.
В интернете есть масса статей о том, как это сделать, но убедительно прошу не читать их, так как «дедовские три уголка вбитые на пару метров и сваренные между собой», о которых в них повествуют, в большинстве случаев не могут нормально функционировать и обеспечивать защиту от поражения электрическим током. Обратитесь за расчетом длины и количества электродов для заземления к инженерам, воспользуйтесь онлайн-калькуляторами или наймите опытных специалистов для этого.
Если у вас уже есть контур заземления остаётся сделать правильно подсоединить в электрощите «землю» и развести её по дому.
С вводом разобрались — если есть заземление переходим дальше, а если нет, то делаем заземляющий контур.
Собираем электрощит
В простейшем случае в электрощите у вас будет расположен счетчик и вводной автомат. Ниже изображена схемы без заземления и с заземлением и разделением нуля на N и PE (система TN-C-S).
Но прежде чем посмотреть на схему прочтите п. 1.7.145 ПУЭ:
« Не допускается включать коммутационные аппараты в цепи PE- и PEN-проводников , за исключением случаев питания электроприемников при помощи штепсельных соединителей.
Допускается также одновременное отключение всех проводников на вводе в электроустановки индивидуальных жилых, дачных и садовых домов и аналогичных им объектов, питающихся по однофазным ответвлениям от ВЛ. При этом разделение PEN -проводника на PE- и -проводники должно быть выполнено до вводного защитно-коммутационного аппарата.»
Получается, что нельзя ставить автомат в нулевой провод, поэтому нужно устанавливать на вводе однополюсный автомат на фазный провод (верхняя схема). Но при этом всё же допускается отключение всех проводников на вводе дачного дома.
Установка двухполюсного автомата на ввод повышает риск появлению опасного потенциала на корпусах электроприборов и всех «нулях» на всех подключенных приборах. И двухполюсные вводные автоматы ставят скорее «по инерции», так как раньше устанавливалось 2 пробки (плавких предохранителя) в счетчик, но и электроснабжение выполнялось иначе, и нормы были другими…
Ниже приведен необходимый минимум для электрощита — счетчик и автомат перед ним.
Рассмотрим такую же схему, но уже с заземлениением выполненным по системе TN-C-S.
Обратите внимание что после точки разделения нуля (после электрощита) N и PE они больше нигде не соединяются — это важно для вашей безопасности (чтобы в случае обрыва нуля на корпусах электроприборов не возникло потенциала) и корректной работы дифференциальных защит (дифавтоматов и УЗО).
Если не соединять ноль с проводом от заземлителя, то получится система ТТ. Такую систему авторы ПУЭ рекомендуют использовать только в тех случаях, когда не удаётся обеспечить необходимые меры по электробезопасности системы TN (плохое состояние ВЛЭП, например).
Но для защиты проводки от аварийных ситуаций в наши дни этого недостаточно. Во-первых, лучше разделить розетки и освещение на разные группы и подключить их к разных автоматическим выключателям. Во-вторых, если у вас большая дача или целый загородный коттедж с электрическим отоплением — то щит станет еще сложнее. Далее мы рассмотрим несколько схем электрощитов различных конфигураций, которые вполне могут удовлетворить потребности большинства людей. Также рассмотрим однофазные и трёхфазные схемы.
Заключение
Мы рассказали о том, как подключаются основные элементы электрощита:
- Однофазный электросчетчик.
- Трёхфазный электросчетчик.
- УЗО.
- Автоматический выключатель.
- А также как выполняется разделение нуля.
Если у вас есть вопросы, замечания или вы хотите получить консультацию — пишите в комментариях. Также не забывайте ставить лайки и подписываться на наш канал! Это важно для нас.
Чертеж электрощита для частного дома
Первое, что вам нужно сделать – это определиться, нужен ли вам надежный электрощит, выполняющий все свои задачи по современным требованиям безопасности, или вы готовы этим пожертвовать и сделать «как получится». Если вы выбрали второй вариант — можно смело закрывать статью, идти в ближайший магазин и покупать то, что вам посоветуют там.
Если же вы готовы сделать самостоятельно, но безопасно – вам нужно запастись терпением. В этой статье я коротко опишу все необходимые характеристики оборудования и подскажу с выбором, но, чтобы более полно понять, что, зачем и почему – вам нужно будет изучать сотни других статей, НТД, примеры других людей, форумы и пр. На это может уйти пару лет или больше, как у нас. И мы всё еще продолжаем узнавать новое. Еще очень действенный вариант – посмотреть все видео на нашем ютуб канале KonstArtStudio. Там мы очень подробно раскрываем все темы. От проектирования до необходимого инструмента. И затрагиваем смежные темы в строительной тематике.
Внимание!
Большинство электрощитов крайне индивидуальны и их сборка содержит очень много подводных камней.
Понимание теоретических основ желательно, но это не может гарантировать правильную сборку и высокую надежность электрощита.
Поэтому вы можете заказать электрощит у нас по цене комплектующих! Поскольку мы имеем хорошую скидку на комплектующие от наших поставщиков — сборка будет фактически бесплатной.
Звоните нам! 8 800 505 56 08 или +7 (925) 057-58-07 или оставьте заявку, нажав кнопку ниже:
Содержание
Сокращения и определения в статье
Требования безопасности
Мы живем в 21 веке. То, что применялось вчера – могло уже устареть или могли появится более современные решения. Так во всем: от средств передвижения до средств связи. Если всего 100 лет назад светофоров на дорогах не было, то сегодня в мегаполисе без них не обойтись. Если 50 лет назад подушек безопасности в автомобилях не было, то сегодня никто из современных производителей не делает автомобиль без них.
Безопасность – это то, что меняется в зависимости от времени, условий и конечно же бюджета.
Также нужно учитывать, что требования безопасности отличаются в разных странах. И чтобы электроустановка была надежной – необходимо рассматривать требования безопасности от лидеров в этой сфере.
Например: о типе УЗО почти нигде не сказано и в РФ нормой считается установка дифференциальных устройств типа «АС», тогда как в Германии (где эти устройства были изобретены) с 1987г. в бытовом секторе тип «АС» запрещен. Разрешается установка только типа «А» или выше («В»).
Да, устройства типа «А» дороже, но они и дают большую защиту для человека, так как контролируют утечку постоянного пульсирующего тока (который сегодня имеется почти в каждом устройстве за счет применения внутренних контроллеров и плат управления).
То есть оборудование постоянно совершенствуется, появляются новые типы нагрузки, а значит и старые нормы безопасности могут не подойти к новым устройствам.
О защите приборов от повышенного и пониженного напряжения и вовсе нет никаких требований в НТД. Тут считается, что вы сами должны принять решение, нужно ли вам это или нет (ПУЭ 7.1.21 рекомендует устанавливать защиту, но не обязует) . Производители любого электрического оборудования лишь указывают пределы рабочего напряжения (причем у каждого прибора эти пределы свои). И считается, что напряжение у нас всегда одно и то же: 230В для однофазной сети и 230/400В для 3-х фазной. И ГОСТ (ГОСТ 32144-2013 п.4.2.2 и ГОСТ 29322-2014 Приложение «А») допускает отклонение от этих величин лишь на 10%.
Но практика показывает, что всё далеко не так радужно и в реалиях это напряжение может быть либо ниже, либо выше по разным причинам. А устройства ведь не знают этого, они лишь имеют свои пороги рабочих напряжений. Поэтому тут также нужно обратиться к практике, реалиям – и защитить себя, своё оборудование и время – поставить Реле Напряжения или стабилизаторы. Правда как выбрать стабилизатор — это отдельная статья. Тут масса нюансов. Можно даже навредить.
Что касается защиты кабелей в зависимости от их сечения – здесь вообще бардак. К сожалению, вывести какую-то единую и четкую таблицу, в которой всё будет четко указано – невозможно. Ввиду большого количества факторов, влияющих на эти значения.
Мы подробно разобрали таблицу в ГОСТе про допустимые длительные токи кабеля. Объяснили, как её читать и что использовать для бытового применения. Всё подробно отражено в видео.
А после этого сделали еще одно видео, где дали четкие цифры номиналов автоматов в зависимости от сечения. В бытовых условиях прокладки кабеля у себя в доме или квартире эта схема подойдет в 99% случаев.
Схема электрощита
Более того – подобные схемы позволят вам кому-то отправить эту схему для консультации. Да даже придя в магазин и предоставив схему со всей необходимой информацией продавцу – ему будет проще сориентироваться в том, что вам нужно. А возможно, если это толковый консультант – даже что-то порекомендовать или изменить в лучшую сторону.
Конечно, в идеале – заказать проект у профессионалов, которые за вполне разумные деньги исходя из своего опыта и знаний подберут все элементы за вас, рассчитают нагрузку, распределят её по фазам и дифференциальным устройствам, учтут те нюансы, которые вы пока не можете знать (расстояния между рейками, количество присоединений в шинах, в автоматах, аксессуары и пр.), а вам останется всё это закупить и собрать. По крайней мере подбор будет сделан.
Не нагромождайте щит. Я не имею в виду «не делайте его большим» (это зависит от задач и условий), но не стоит при использовании 46 модульных устройств стараться всё это «втискивать» в бокс на 48 модулей. Никто не выбирает себе накопитель на 1Тб, когда нам уже сейчас нужно занять в нем 900Гб. Вряд ли вы будете покупать какой-нибудь трос для автомобиля ровно на 1 тонну, когда сейчас известно, что буксируемый предмет будет 800кг. Помимо очевидного, что в этот щит через пару-тройку или 5 лет возможно придется доставить еще пару линий или поменять что-то на другое – главное тут в том, что оборудование в электрощите имеет свойство греться. Тем более — реле. Они вообще чаще находятся в задействованном состоянии и греются. Для многих устройств производителями прямо указывается необходимое пустое расстояние.
И для лучшей естественной вентиляции это свободное место будет кстати. Еще один момент, почему лучше брать бокс с запасом – это то, что в этом случае получится лучше разгруппировать линии. То есть «розетки» — отдельно. Потом пару пустых модулей и далее группа «свет». А не так, что всё вперемешку и приходится часть линий убирать на другую дин рейку. Конечно, никто не запрещает поставить 46 модулей в бокс на 48 модулей, но оставить запас – всегда лучше.
И самое главное по закупке. Не экономьте на своей безопасности! Не ориентируйтесь на низкие цены. Скорее всего – вам хотят продать подделку или несертифицированное изделие. Цена такой покупки минимум – время. А максимум – жизнь. Вряд ли вы будете покупать подушку безопасности где-то в «подвале» или «на рынке». Вы делаете щит один раз в 10-30 лет. Заплатите чуть больше, но купите оборудование у официального дилера (их список всегда есть на сайтах производителей). Заплатите еще чуть больше, подождите заказную позицию, но купите действительно современное и качественное изделие! Электрощит – это ваш щит! Только от вас зависит, сможет ли он выполнить свою функцию или будет являться бутафорией.
В любом случае данная схема поможет вам лучше ориентироваться в будущей сборке, позволит визуализировать будущий щит, а также эту схему можно будет распечатать или сделать копию и сохранить, например, на компьютере на будущее. Или распечатать и вложить в электрощит. Это всё кажется не нужным когда мы говорим про щит на 8 модулей. А если их 48? Или 216 с контроллерами, клеммами, реле приоритета и АВР системой? Сделайте схему, утвердите её сами для себя, только потом двигайтесь дальше. Сначала план – потом действие. И еще – купите пару упаковок стяжек. Причем тоже не самых дешевых. Вам это поможет дальше. Если, конечно, вы хотите собрать щит красиво).
Подбор необходимых комплектующих
Автоматические выключатели помимо очевидной — коммутирующей (вкл/выкл) имеют 2 степени защиты: тепловой расцепитель и электромагнитный. Первый отвечает за отключение линии в зависимости от плавной перегрузки кабеля, его перегрева. Второй – за резкий скачок тока (КЗ или стартовый ток).
Каждый автоматический выключатель помимо номинала имеет еще и характеристику – «В», «С», «D», «K», «Z». Это ВТХ или Время-токовая характеристика.
Эта характеристика отвечает за номинал отключения АВ при резком превышении тока. Для «В» — это от 3-х до 5 номиналов, для «С» — от 5 до 10.
Более редкие «K» и «Z» это 8-15 номиналов и 2-3 номинала соответственно. Эти характеристики используются редко и в специфических условиях. Не в быту.
Что означают эти цифры?
Например, возьмем АВ номиналом 10А. Это значит, что номинальный ток, на который рассчитан этот АВ – 10А.
И есть еще ряд признаков, влияющий на допустимые и максимальные токи.
Например, АВ выпускаются в следующих бытовых значениях:
Но есть и 13А автоматы. Они существуют. Просто не используются часто. И все эти значения лишь говорят о его номинале.
А вот и признаки, которые показывают, какой ток этот автомат может пропустить:
— условный ток не расцепления (ГОСТ Р 50345-2010. П.8.6.2.2). Он равен коэффициенту 1,13 у всех производителей АВ. Это указано в ГОСТе и именно ему следуют производители при выпуске своих АВ.
Это значение показывает, что при коэффициенте 1,13 – АВ не отключится никогда. То есть у АВ на 10А при прохождении через него тока, равному 10А*1,13 то есть 11,3А – АВ никогда не отключится.
— условный ток расцепления (ГОСТ Р 50345-2010. П.8.6.2.3). Он равен коэффициенту 1,45.
То есть АВ на 10А отключится примерно в течение одного часа при номинале 10А*1,45 = 14,5А. Время отрабатывания нужно смотреть по таблицам у самих производителей. Но отключиться он должен именно ДО 1-го часа (для автоматов до 63А). Через 2 минуты или 59м и 59с – неважно. Задача – до одного часа.
Еще есть один параметр при проверке АВ – через него пропускают ток, равный 2,55 его номинала . АВ должен отключиться до 60с при номиналах до 32А и до 120с при номинале свыше 32А (ГОСТ Р 50345-201 П.9.10.1.2).
Таким образом наш АВ на 10А – должен отключиться до 60с при 10А*2,55=25,5А.
Из всего вышесказанного мы видим, что 10А – это лишь номинальная величина, указанная на самом АВ. А сами токи и условия могут быть разными. Это мы еще не рассматриваем место установки и климатические условия. Там тоже есть немало параметров.
Но всё это я написал лишь к тому, чтобы вы держали в голове: 10А – это не значение, при котором АВ должен отключиться. Есть много нюансов.
Это мы всё обсуждали тепловой расцепитель (плавное увеличение тока).
Вернемся к буквам. «В», «С» и пр. Это характеристика электромагнитного расцепителя.
По ГОСТ время размыкания должно быть до 0,1с при прохождении через АВ тока для каждой их своих характеристик.
Если мы возьмем наш автомат на 10А с характеристикой «В», то ток для срабатывания электромагнитного расцепителя (или мгновенного расцепления) будет в диапазоне от 3 до 5 номиналов. Для характеристики «С» — от 5 до 10.
Это означает, что автоматический выключатель 10А с характеристикой «В» должен отключится за время до 0,1с при прохождении через него тока от 30 до 50А.
Для характеристики «С» — от 50 до 100А. Для характеристики «Z» -от 20 до 30А.
Эти характеристики нужно выбирать исходя из следующих условий:
— ток короткого замыкания в линии;
— стартовый (импульсный) ток подключенного оборудования;
— рекомендация конкретного изделия;
Также стоит учитывать, что данные параметры действуют для частоты тока, равной 50Гц. При другой частоте — значения могут быть другими.
Например, если в вашей сети известно, что ТКЗ на данной линии равен 90А, а у вас есть оборудование, например насос, потребляющий 5кВт, кабель для него проведен 4кв.мм, автомат защиты стоит 20А, то применять в этом случае характеристику «С» — опасно. Так как 20А*5-10 номиналов = от 100 до 200А.
Это означает, что АВ при ТКЗ в этой линии не отключится. По крайней мере шансов очень мало.
И необходимо устанавливать АВ с характеристикой «В». Тут диапазон будет 60-100А.
Конечно, такие небольшие ТКЗ в системах бывают редко, но всё же бывают. На это влияют множество факторов. И в идеальных условиях этот ТКЗ необходимо мерить и знать. Чтобы правильно подобрать защиту. Либо сразу ставить более «быстрые» (то есть с меньшим номиналом электромагнитного расцепителя) аппараты защиты.
Второй пример. ТКЗ в вашей сети нормальный, скажем 1500А.
У нас есть какой-то прибор. Скажем это БП для какой-то нагрузки.
Номинальный ток этого БП – 2,5А. Вы вряд ли будете подключать этот БП проводами (кабелями) по номинальному току, поэтому скорее всего возьмете более распространенные – 0,75 или 1,5 кв. мм.
АВ для защиты данных сечений – это 6 и 10А соответственно.
Что будет, если мы возьмем 0,75 кв. мм и 6А с хар-кой «B»? Отключение при ТКЗ должно быть в диапазонах от 18 до 30А. Это меньше, чем ТКЗ в сети, так что АВ должен отключиться.
НО! В паспорте к БП должен быть указан стартовый, импульсный ток (Inrush Current).
Например, у нашего БП этот ток равен 60А. Да, такое часто бывает, что стартовый ток БП в несколько раз превышает его номинальный.
Что будет, если наш автомат с выбранной хар-кой при резком скачке тока от 18 до 30А будет питать этот БП? В момент включения потребление БП будет на миг 60А. Автомат отключится.
Что делать? Если выбрать характеристику «С» — тоже может отключиться.
Вариант либо менять сечение на 1,5 кв. мм и ставить 10А автомат либо ставить автомат на 6А, но с характеристикой «D». От 10 до 20 номиналов. А значит от 60 до 120А.
И это те моменты, где нужно подумать, посчитать и только потом выбирать аппараты питания и защиты.
Конечно и тут есть нюансы, например, защита внутренней электроники самого БП. Часто производители уже все посчитали и в инструкциях к БП пишут необходимый номинал и тип АВ, то есть его характеристику. Этим пренебрегать не стоит.
Еще важная характеристика для АВ – это способность этого АВ отключить нагрузку при ТКЗ. Мы рассмотрели ситуации, в которых ТКЗ либо 90А, либо 1500А.
А если ТКЗ в сети, скажем – 5000А? Это тоже редкость (в бытовом секторе), но и такое бывает.
И именно для этого существует такое понятие, как «номинальная наибольшая отключающая способность». Обозначается в виде «Icn» и измеряется в Амперах.
Наиболее распространенные – 3кА, 4,5кА, 6кА, 10кА, 15кА и пр. То есть от 3000 до 15000А и выше.
Если у нас стоит АВ с Icn 3кА, то при ТКЗ в 5кА – этот автомат не сможет отключить проблемную линию. Он просто «сгорит», через него пойдет ток, на который этот АВ не рассчитан в принципе. Конечно, может повезти, но лучше не рисковать своей жизнью.
Чем выше это значение, тем больший ток способен пропустить АВ без последствий для себя и сохранением своей функциональности. То есть отключить линию.
Но чем выше это значение – тем аппарат дороже. И далеко не всегда нужны эти значения. 10, 15, 25, 50кА – это уже всё производство. Большие вводные и потребляемые токи. В бытовом секторе достаточно использовать 4,5кА или 6кА. Лично мы рекомендуем ставить всегда с небольшим запасом, например 6кА устройства (что, собственно, и гласит указанный ГОСТ выше).
Опять же та же Германия – 4,5кА в бытовом секторе запрещены. Минимум 6кА. Но чтобы выбрать точно, по цифрам – их нужно знать. А значит мерить ТКЗ на каждом определенном объекте в определенных условиях эксплуатации. Или брать с запасом. Тут решение только за вами, если вы собираете щит для себя.
УЗО – это устройство, созданное для защиты человека от поражения электрическим током. Да, безусловно есть так называемые «противопожарные» функции УЗО. Но об этом далее.
Основная функция – защитить человека. Испытаниями было выявлено максимально допустимое значение тока, которое не приведет (скорее всего) к летальному исходу при его прохождении через человека. Это значение – не более 50мА. При большем токе – паралич дыхания и большой риск фибрилляции сердца. А согласно ПОТЭУ (Правила охраны труда при эксплуатации электроустановок) — смертельным считается ток в 100мА.
Ниже на рис.1 отображена таблица воздействия тока на человека при прохождении через него различных значений тока.
Утечка тока – это аварийное состояние. В нормально состоянии ток, питающий нагрузку – не должен ничего «терять» (за исключением естественных токов утечки). УЗО меряет отдаваемый ток на потребителя и возвращаемый по нулю. Эти значения должны быть одинаковыми. Как только теряется его часть – в зависимости от номинальной уставки утечки УЗО – оно отключает линию.
Утечка, как правило – должна перетекать в PE проводник. Но что если этого контура нет? Нет заземления? В этом случае пробитый кабель, по которому может пойти утечка – ждёт своего момента. Как известно – ток течет по принципу разности потенциалов. А значит пока не будет спроса – ток никуда не потечет. Если есть контур заземления – ток течет по нему. Если его нет – то потечет по первому и самому доступному пути. В отсутствии контура заземления – скорее всего это будет человек, который пропустит через себя этот ток. В этом случае УЗО также поймет, что произошла утечка (при выполнении множества условий) и отключит линию. Тут есть свои нюансы. И для правильного функционирования УЗО эта утечка тока, то есть значение утекающего «мимо» тока должна быть в пределах установленных ГОСТом значений.
А значения эти – от 10,5мА до 42мА для УЗО на 30мА и от 3,5мА до 20мА для УЗО на 10мА для УЗО типа «А» (ГОСТ Р 51326.1-99 (МЭК 61008-1-96).
На данный момент существует 2 основных типа УЗО, продающихся в РФ:
УЗО типа «АС» — оно по нормам защищает и реагирует на утечку только переменного тока.
УЗО типа «А» — всё, как у УЗО типа «АС» + реагирует на утечку постоянного пульсирующего тока. Этот ток сегодня есть в большинстве бытовых приборов – от стиральных машин до зарядок для телефонов. В большом количестве приборов контактирующих с водой производителями прямо указано, что необходимо использовать УЗО только типа «А».
Мы рекомендуем применять именно его. Как указано выше – в Германии тип «АС» запрещен для установки еще с 1987 г., так как не обеспечивает необходимый сегодня уровень безопасности. А Германия — это страна, которая изобрела дифференциальные устройства и задаёт тренды в безопасности.
Российская НТД гласит лишь о том, что «могут применятся как тип «А», так и тип «АС». (ПУЭ 7.1.78)
Существуют также дополнительные типы, производимые лидерами рынка:
УЗО типа «А-APR» — всё, как в УЗО типа «А» + стойкость к ложным срабатываниям;
УЗО типа «F» — всё, как в УЗО типа «A-APR» + обнаружение высокочастотных токов утечки до 1кГц.
УЗО типа «B» — всё, как в УЗО типа «F» + обнаружение сглаженных или выпрямленных постоянных токов утечки;
УЗО типа «B+» — всё, как в УЗО типа «B» + обнаружение высокочастотных токов утечки до 20кГц.
Тип «A-APR» еще можно найти у крупных дилеров (но только на заказ), а вот типы «F», «B» и тем более «B+» нет ни у одного из дилеров. Но скорее это связано с очень-очень редким и специфическим применением, что в быту пока излишне. Впрочем, как и тип «A-APR».
Теперь про ложные срабатывания и естественные токи утечки.
Также существует своя подгруппа УЗО – это специальные селективные УЗО (не путать с «противопожарным»), они спроектированы таким образом, что имеют выдержку срабатывания при утечке тока. Сделано это для того, чтобы нижестоящее УЗО на какой-то своей линии или группе – отработало первым. И только если утечка после этого не пропадет – в действие вступало бы УЗО селективное. Как правило такие УЗО ставят на вводе, в вводном щите на весь объект. Это УЗО «следит» за общей утечкой на всех линиях. Такие УЗО следует ставить на 100, 300 или 500мА (в зависимости от общей протяженности кабельных линий и их общего потребления). Обозначается такое УЗО английской буквой «S». Выдержка срабатывания таких УЗО от 50 до 500мс.
Так как существует глобальная проблема потерь как напряжения, так и токов (по множеству причин), то и в быту с этим приходится сталкиваться. Если произвести точный расчет потерь тока нет возможности, то ПУЭ даёт следующий расчет (ПУЭ 7.1.83):
Из этого расчета получается, что для потребителя, расположенного в 10см от питающего линию АВ, потребляющего в номинале 20А – естественная утечка может достигать 8мА.
А у потребителя, потребляющего в номинале 40А – естественная утечка будет уже 16мА. И чисто по цифрам – УЗО на 30мА уже может сработать по утечке.
Разумеется, в ПУЭ приведен очень примерный расчет. И если ваша электроустановка сделана с применением современных материалов, кабелей с хорошей изоляцией, все соединения сделаны надежными, допустимыми ГОСТом способами – то естественные утечки можно свести к минимуму. Также нужно учитывать, что чем более влажное помещение – тем эти утечки будут выше. Вполне может быть такая ситуация, при которой в свежем ремонте, сразу по его окончанию или еще в процессе – УЗО могут отрабатывать по утечке. Связано это именно с влажностью после штукатурных работ. А через пару-тройку месяцев это закончится, так как влажность снизится.
И еще не забывайте отделять в частном доме нагрузки, находящиеся на улице – на свои групповые УЗО. Чтобы эти нагрузки, больше подверженные риску утечек – не затронули нагрузки в доме.
Само по себе УЗО – это групповое устройство. Оно, как правило – применяется для нескольких нагрузок, нескольких АВ. О том, как выбрать номинал УЗО и как его защитить – у нас есть очень подробное и наглядное видео. Предлагаю с ним ознакомиться в конце статьи.
Конечно, УЗО можно использовать и для одной нагрузки, одного автомата. Это не запрещено. Но для таких ситуаций изобретены другие устройства – дифавтоматы. О них чуть дальше.
Что касается группировки и количества УЗО. Учитывая все вышеперечисленное, связанное с токами утечки, типами и номиналами – вполне допустимо (произведя необходимый расчет) поставить на объекте одно УЗО на все потребители. Это в любом случае будет лучше, чем не ставить его вовсе.
Но когда речь идет о современной, безопасной, удобной электроустановке – то, чем лучше и больше мы сделаем линий и групп, тем меньше будет шанс влияния одной аварийной линии на другую. Крайности здесь 2 – одно УЗО и один вводной автомат на весь объект и дифавтомат на каждую розетку и каждую лампочку. Хуже только вообще отсутствие УЗО и автомата, а лучше разве что дублирование дифавтомата еще УЗО и автоматом, установка на каждую лампочку сигнализации, GSM реле и охранника 😉
Точнее это уже не «лучше», это уже очевидный перебор. А вот всё, что находится посередине этого – это очень субъективно и индивидуально.
В случае утечки на линии розеток – отключатся только розетки, свет и техника будут работать. В случае утечки в линии света – отключится только свет. Торшер, включенный в розетку – будет работать. Как и вся прочая техника.
Иногда мы встречаемся с мнением, что надо ставить не 1 УЗО на, например, весь свет, а несколько, например, 2. Чтобы при утечке отключалась половина. Но это именно то, что я писал выше – всё субъективно. «Удобство» и «достаточность» — меры индивидуальные. Если вы хотите, чтобы при утечке отключалась только та линия, на которой произошла утечка – следует все линии делать на дифавтоматах. А это значительно дороже, так как современный дифференцаильный автомат от лидеров рынка стоит от 4-5т.р. за одну штуку. Это, безусловно, на сегодняшний день лучший и самый удобный вариант, но он и стоит сильно дороже.
Достаточно распространенное мнение, что на свет не нужна дифференциальная защита. Мол со светом человек не контактирует, а когда надо что-то поменять – можно выключить клавишу света. Но у меня вопрос – с выключателем света получается человек тоже не контактирует? Причем постоянно? Утечки не может возникнуть в нём? Может.
А правильно ли скоммутирован выключатель, отключит ли он фазный проводник, а не нулевой? Такой гарантии тоже нет. Так что дифференциальная защита должна быть везде, где это не запрещено прямо НТД (например системы ОПС — ПУЭ 7.1.81).
И последняя характеристика, вернее тип УЗО – это тип его работы. Бывают УЗО электронные и электромеханические. Для срабатывания электронного УЗО при выявлении утечки – самому УЗО необходимо получать напряжение от питающей линии (230/400В). Только в этом случае электроника отключит УЗО. Плюсы этого типа в том, что их можно производить в более компактном корпусе и они могут стоит несколько дешевле, чем электромеханические. Также отмечается, что электронные УЗО менее чувствительны к гармоникам (нежелательные частоты, накладывающиеся на основную форму волны).
Очевидным минусом этого типа является то, что при отсутствии необходимого напряжения на УЗО и возникновении утечки тока – оно не отключится. То есть если у вас стоит УЗО на 230В, то есть питает сеть с фазным и нулевым проводом, и по каким-то причинам нулевой проводник будет отсутствовать или будет присутствовать разрыв нулевого провода и при этом произойдет утечка фазного потенциала после этого УЗО – оно не сможет отключиться, а значит защитить человека.
Электромеханические УЗО. Этот тип УЗО не нуждается в постоянном питании (наличию напряжения 230/400В) и в случае возникновения утечки тока – отключит проблемную линию.
Выше я уже не раз применял это определение и настало время внести ясность в то, что это такое.
Дифференциальный автомат или АВДТ (автоматический выключатель дифференциального тока) – это аппарат, совмещающий в себе устройство и функции АВ и УЗО. То есть это УЗО с функцией АВ. Или АВ с функцией УЗО.
Все, что актуально для характеристик и типов АВ или УЗО – актуально и для дифференциального автомата.
Единственное, что нужно помнить – если УЗО – это больше групповое устройство, то дифавтомат, как обычный автомат – ставится один на определенную линию (если это не вводной дифавтомат на весь объект).
Каких-то своих особенностей, присущих исключительно дифавтомату – у него нет.
Разве что не все производители дифавтоматов закладывают такую функцию, как указание по типу отключения: утечка или КЗ/тепловой расцепитель.
Если говорить в глобальном смысле – напряжение едино в нашей электроустановке. Оно «выдается» нам снабжающей организацией. Оно же его должно контролировать. И как было указано ранее – ГОСТом допускается отклонение от действующего напряжения не более, чем на 10% в каждую сторону (ГОСТ 32144-2013 п.4.2.2).
В РФ на сегодняшний день стандартом напряжения в бытовом секторе является 230/400В при частоте 50Гц (ГОСТ 29322-2014 (IEC 60038:2009) п.3.1)
А значит, что допустимые отклонения возможны в пределах от 207В до 253В для однофазной сети и от 360В до 440В для трёхфазной сети. Но это все «на бумаге». Увы, но на практике зачастую оказывается так, что в только что построенном многоквартирном доме или в СНТ – напряжение может легко быть и 180В, и 270В. Что делать?
Ну в первую очередь несмотря на то, что это напряжение выходит за пределы допустимых – нам нужно позаботиться о себе. О своём времени и своих деньгах. К пожару такие значения приведут вряд ли, а вот сгореть БП в телевизоре или холодильнике – может легко. С чем связан тот факт, что напряжение не то, которое должно быть – вопрос без ответа. Конечно, нужно это зафиксировать, вызвать лабораторию с поверенными измерительными инструментами и подать эти данные в заявлении в снабжающую организацию со ссылками на НТД. Но гарантий того, что после этого напряжение придет в норму – нет.
Но это лишь часть проблемы.
Далеко не каждый электрический прибор в вашем доме способен выдержать такой «удар судьбы». Как правило, вообще любой прибор в своей инструкции или паспорте содержит информацию допустимых входных напряжений. У одних приборов этот диапазон шире, у других более узок. И чтобы защитить эти приборы от подобных аварий – ставится РН. Оно фиксирует значение входящего напряжения и в случае выхода этого значения за выставленные пороги (пороги могут быть выставлены производителем устройства и не иметь возможность их корректировки, а могут выпускаться в виде устройства, в котором пользователь самостоятельно выбирает пороги отключения) – отключает питание. Таким образом оно защищает подключенную после него нагрузку от повышенного или пониженного напряжения. Это основная функция РН. Конечно, у РН бывают и дополнительные функции – отображение текущего потребления в А, в кВт, отображение текущего напряжения, фиксация предельных значений, функции контроля чередования фаз и многие другие. Но основная задача РН – именно защитить технику путём отключения нагрузки.
Другим способом защиты от данного недуга является установка стабилизаторов напряжения. Часто у нас в частном секторе ставят стабилизатор на какие-то определенные нагрузки. Это, конечно, лучше, чем ничего. Но при этой ситуации у вас не сгорит БП телевизора (если стабилизатор установлен для телевизора), но может сгореть что-то другое. В случае установки стабилизаторов их следует устанавливать на вводе, на всю электроустановку. Это, безусловно, будет дороже, чем поставить РН или вообще ничего не ставить, но стабилизаторы – это дополнительное удобство. Заключается оно в том, что техника при повышенных или пониженных входящих напряжениях продолжает работать. А в случае с РН – отключается. Но тут нужно учитывать, что далеко не каждый стабилизатор способен «выпрямить» напряжение до 230В при входящих 400В. Скорее всего он сам себя отключит своей внутренней защитой. Поэтому тут стоит подумать, что устанавливать. И также отметим, что при установке на вводе РН – нет никакого смысла ставить стабилизатор на какую-то отдельную линию. Так как РН при аварийном напряжении всё равно отключит линию полностью. А вот поставить на вводе стабилизатор, а после него РН – это дополнительная защита «от дурака». Если стабилизатор выйдет из строя, если стабилизатор еще не куплен или отправился в ремонт.