- Солнечная энергия для дома
- Что такое солнечные коллекторы и как они работают?
- Солнечные батареи и их разновидности
- Как просчитать, насколько выгодно будет установить солнечные панели?
- Солнечная энергия для дома своими руками
- Использование солнечной энергии в частном доме
- Достоинства и недостатки
- Схема подключения
- Выводы
Солнечная энергия для дома
Дата публикации: 21 сентября 2018
Солнце является возобновляемым источником энергии, который можно использовать без вреда для человека и окружающей среды. Кроме того, постоянно растущие цены на электроэнергию заставляют задуматься о переходе на альтернативный источник энергии, для которого установка оборудования окупится всего за несколько лет.
Что такое солнечные коллекторы и как они работают?
Прежде чем перейти к рассмотрению устройств, способных преобразовывать солнечную энергию в электрическую, стоит так же обратить внимание на аппараты, при помощи которых можно использовать тепловую солнечную энергию для дома.
Солнечные коллекторы – это устройства, которые посредством нагрева вещества-теплоносителя позволяют передавать тепловую энергию дальше, чтобы нагревать воду. Существует два типа коллекторов:
Считается, что последние более производительны, так как они эффективны в условиях низких температур и благодаря своему устройству могут дольше держать тепло. Потеря тепла у вакуумных коллекторов минимальна – 5%, как раз благодаря вакууму, создаваемому в трубках коллектора. Если сравнивать это устройство с чем-то привычным для нас, то работа трубок в коллекторе схожа с принципом работы обычного термоса.
Солнечные батареи и их разновидности
Если говорить об использовании солнечной энергии для частного дома в целях экономии электроэнергии, то речь пойдет о солнечных батареях. Но в этом случае, не все так просто, потому что на сегодняшний день существует множество видов панелей, существенно отличающихся своей производительностью. А чтобы не сесть в лужу с расчетами выгоды от такого перехода на альтернативную энергию, нужно ознакомиться с разновидностями солнечных панелей, предлагаемых на рынке.
Сегодня, солнечные батареи традиционно разделяют на 2 типа: кремниевые и пленочные. И оба типа панелей представлены множеством видов панелей, отличающихся либо материалом в основе, либо технологией производства.
- Из монокристалла кремния – КПД 22%;
- Из поликристалла кремния – КПД 18%;
- Из аморфного кремния – КПД до 5%.
- Из теллурида кадмия – КПД 12%;
- Из селенида меди-индия-галлия – КПД 20%;
- Из полимеров – КПД до 5%.
Существуют так же панели смешанного типа, которые благодаря смешанной технологии производства, помогают повысить производительность.
Но тот коэффициент полезного действия, который указан в списках выше, действителен только в абсолютно ясные дни. При совокупности слишком многих неблагоприятных условий, установка батарей и такое использование солнечной энергии для дома становится попросту не рентабельно.
Как просчитать, насколько выгодно будет установить солнечные панели?
Кроме коэффициента полезного действия, присущего тому или иному виду батареи, существуют так же другие причины малой производительности батарей. К ним относят:
- Облачность;
- Нагрев поверхности панелей;
- Прямая зависимость количества энергии на выходе от суммарной площади батареи;
- Угол падения солнечных лучей на поверхность батареи.
Если 2 и 3 моменты, теоретически, можно решить, то первый и последний можно только учесть в расчетах.
И вот допустим, Вы взялись считать, сколько же мощности будет выдавать солнечная батарея в ясный день, при падении лучей на поверхности модуля под прямым углом. Количество солнечной энергии в ясный день обычно равняется 1000 Вт на м2. Если Вы решили сэкономить и взять панель с меньшей производительностью площадью модуля в 2,5 м2, у Вас выйдет такой расчет:
солнечная энергия (1000 Вт/м2) × КПД (18%) × площадь модуля (2,5 м2) = мощность (450 Вт).
Для расчета мощности всей батареи суммируйте площадь модулей.
Если же брать не идеальные условия для работы батареи – скажем, вечер зимнего облачного дня – то для расчета по формуле выше Вам необходимо узнать так же количество солнечной энергии, которая дойдет до поверхности батареи. Для этого берем солнечную энергию в ясный день, угол падения лучей на поверхность модуля вечером, 60% преобразуемой панелью энергии в условиях облачной погоды. Получаем следующий расчет:
1000 Вт/м2 × sin25̊ × 60% = 252 Вт/м2
Затем, подставляем получившееся число в первую формулу и получаем итоговое количество энергии в 113 Вт.
Солнечная энергия для дома своими руками
Купить панели солнечной энергии для дома в наши дни это дорогое удовольствие, поэтому многие предпочитают мастерить самодельные батареи. Цены на батареи солнечной энергии для дома колеблются в пределах от 45 до 450$, в зависимости от материала изготовления батареи и от ее мощности. Логично, что чем качественнее и производительнее батарея, тем она дороже.
Своими руками сделать солнечную панель выйдет немного дешевле, потому что, если поискать, можно найти более дешевые материалы, из которых изготавливают модули. Из материалов, которые Вам понадобятся можно выделить:
- Фотоэлементы.
- Оргстекло или другой прозрачный материал, не пропускающий свет в инфракрасном спектре.
- Материалы для каркаса панелей.
- Материалы для пайки фотоэлементов.
- Герметик (например, силиконовый).
Чтобы рассчитать количество материалов, посчитайте, какое количество энергии Вам нужно для полного обеспечения дома электроэнергией и, исходя из этого, рассчитывайте необходимую площадь батареи.
Берем электричество с собой в дорогу
Свет, который всегда при тебе
Солнышко светит – запись идет…
Вода и солнце – день чудесный…
Вам нужно войти, чтобы оставить комментарий.
Использование солнечной энергии в частном доме
Постоянный рост стоимости традиционных источников электричества, зависимость от нестабильной работы центральной сети заставляют искать более перспективные и надежные варианты.
Частная электростанция, работающая от Солнца— это неистощимый источник электроэнергии, очень удобный и экологически чистый способ питать все бытовые приборы. Система отлично масштабируется. Есть готовые портативные устройства для питания телефонов и планшетов, а есть мегаваттные станции, способные питать небольшие города и заводы.
Солнечная электростанция для дома включает следующие компоненты:
- фотоэлектрическая панель — прибор, преобразующий излучение Солнца в постоянный ток;
- контроллер — микросхема, которая управляет работой панели, стабилизирует ток, выбирает оптимальный режим работы в зависимости от нагрузки, интенсивности облучения;
- аккумулятор — нужен, чтобы накапливать излишки энергии и отдавать их в ночное время или в пасмурную погоду;
- инвертор — преобразует постоянный ток в переменный стандартных для бытовой сети параметров (220 В 50 Гц).
По функциональному предназначению различают автономные (изолированные), резервные системы, варианты со сбросом в централизованную сеть и специализированные решения. Сделать своими руками проще всего изолированную или резервную, система со сбросом в сеть требует согласования с многими инстанциями.
Также часто и совокупная мощность панелей делается меньше. Но при этом устанавливается инвертор, который способен переключаться с централизованной сети на аккумуляторы и обратно.
Солнечная электростанция с возможностью отдачи излишков в общую сеть — это хорошие долгосрочные инвестиции. Если работа сети стабильна, то можно вообще отказаться от использования аккумуляторов. Но такая схема требует установки специального устройства, умеющего синхронизировать фазы локальной и общей электросети. Также возникнет много проблем с официальным оформлением такого подключения.
Использовать такой источник электричества выгоднее в первую очередь в южных регионах нашей страны, где больше общее число безоблачных дней в году и выше инсоляция.
Для северных регионов технология по понятным причинам менее удобна, но благодаря постоянному развитию технологии эффективность панелей растет, что делает их применение целесообразным даже в высоких широтах.
В первую очередь такие электростанции должны быть интересны владельцам домов, удаленных от электросети или расположенных там, где качество электроснабжения не выдерживает никакой критики. Но также эта технология должна привлекать тех, кто строит современный энергоэффективный дом.
Читайте об использовании ветряной электростанции в частном доме. Рекомендуем ознакомиться с нашим новым материалом о том, какие источники альтернативной энергии помогут вам сэкономить?
Достоинства и недостатки
Готовые электростанции, работающие на энергии Солнца активно продвигаются в Америке, Европе и странах Азии, что обусловлено огромными перспективными и имеющимися преимуществами этого решения. В качестве источника энергии используется Солнце, которое будет поставлять свой свет еще много миллиардов лет.
Гелиоэнергетика совершенно экологически безопасна — не выделяется никаких вредных веществ, система работает бесшумно, нет риска взрыва или воспламенения.
Солнечное излучение нестабильное, нерегулярное. Его интенсивность постоянно меняется, при этом если угол наклона Солнца над горизонтом можно предугадать, то облачность прогнозам не поддается. Пик мощности не совпадает с пиком потребления.
Еще одна важная проблема, над которой бьются ученые — низкая энергоемкость существующих аккумуляторов, их высокая цена и неуклонная деградация. Самый дешевый свинцовый прослужит 2−3 года, классические литий-ионные служат 8−10 лет.
Наиболее перспективные на сегодняшний момент — литий-железо-фосфатные, способные служить без существенной потери полезной емкости до 10−15 лет, но эта технология появилась недавно и стоит еще очень дорого.
Еще одна проблема с аккумуляторами — в их конструкции используются токсичные, загрязняющие природу компоненты, что порождает острую проблему утилизации.
Схема подключения
Главным элементом солнечной электростанции является панель. Они бывают разного типа, разной производительности и размеров. Несколько однотипных панелей можно объединять в кластер и управлять одним контроллером.
От общей мощности панелей зависит то, сколько энергии будет система производить.
Устанавливая панели своими руками, нужно выбирать самое освещенное Солнцем место — южную часть кровли, фасада, открытый участок двора.
Однако из-за нестабильности солнечного облучения панели производят ток с постоянно изменяющимися параметрами.
Для выравнивания и наиболее рационального использования, а также для защиты панелей и аккумуляторов от повреждения нужен контроллер.
Он стабилизирует ток, выполняет распределение нагрузки и производства между панелями, потребителями и аккумуляторами.
К контроллеру подключаются аккумуляторы.
От их типа и количества зависит общая емкость, срок службы. Чем больше емкость, тем дольше дом сможет обходиться без солнца и электричества из сети. Тип аккумуляторов должен быть совместим с контроллером.
Также к контроллеру можно непосредственно подключать приборы, работающие от постоянного тока. Обычно используются модели на 12 вольт, хотя есть и на 24. Если своими руками провести в доме параллельно сеть на 12 вольт, то можно напрямую запитывать множество маломощных устройств.
Чтобы запитывать обычные бытовые приборы, необходим переменный ток 220 вольт. Для его получения к аккумулятору или контроллеру подключается инвертор, преобразователь. Он получает постоянный ток и на выходе дает обычный переменный бытовой.
В таком случае мы получим резервную солнечную систему, а аккумулятор можно будет заряжать еще и от сети. Также в продаже есть контроллеры, которые выполняют также функции инвертора, в таком случае бытовые приборы могут подключаться непосредственно к нему, схема несколько упрощается.
Оптимальный алгоритм работ следующий:
- На этапе строительства укладываются провода.
- Затем после завершения отделочных работ устанавливается контроллер.
- Отводится место для аккумуляторов, вначале можно установить минимальное количество и потом наращивать объем.
- Ставится инвертор.
- В конце монтируются панели. Их тоже можно приобретать постепенно, наращивая производительность.
Можно избавиться от аккумуляторов, если излишки производимой энергии направлять в систему отопления дома. Для этого в водяной контур отопления встраивается электрический бойлер, на питание которого отдается все лишнее электричество.
Но эффективнее пользоваться в таком случае тепловыми насосами, которые позволяют увеличить КПД системы.
Поставив обычную сплит-систему (кондиционер), способную работать при низких температурах, можно запитать его от инвертора и получать около 2 кВт тепла на каждый потраченный киловатт электричества.
Такая система отопления удобна в весенний и осенний период, когда нет сильных морозов.
Одна панель максимальной мощностью 20 ватт стоит около 2300−2600 рублей, а 100-ваттная обойдется в 8500—9500 рублей. Контроллер на 45 ампер 12 или 24 вольта будет стоить 11−14 тысяч рублей.
Если брать самые дешевые свинцовые аккумуляторы, то за 100 амперчасов 12 вольт придется еще заплатить около 14 тысяч. Если брать наиболее долговечные литий-железо-фосфатные, то за емкость в 8−9 кВт*ч придется выложить не менее 150 тысяч рублей.
Чтобы запитать от аккумуляторов весь дом, потребуется инвертор мощностью не менее 3 кВт. Обойдется такой прибор в 50−80 тысяч. Есть в продаже и готовые комплекты, их приобретение не гарантирует финансового выигрыша, но хотя бы обезопасит от покупки несовместимых устройств.
Если не делать монтаж системы своими руками, то за услуги профессионалов придется выложить еще несколько десятков тысяч рублей — в зависимости от сложности схемы и индивидуальных условий.
Выводы
Следует отметить, что при помощи полученной энергии можно существенно снижать затраты на отопление дома как в осенний, так и в весенний период.
Конечно, стоимость всего комплекта и цену услуг по монтажу никак не назовешь низкими. Период окупаемости вложений составляет более 15 лет при стабильных расценках на электроэнергию.
Но, вложившись один раз, можно годами пользоваться и не думать о перепадах напряжения, грозовых разрядах и тарифах на электричество. Электростанция, работающая на энергии Солнца, поставляет качественный ток со стабильными параметрами, а это значительно увеличит срок службы бытовой техники, снизит риск ее поломки.